Journal of Organometallic Chemistry, 202 (1980) C18-C20 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF cis-Pt(SH)₂ (PPh₃)₂ AND RELATED ALKYL AND ARYL THIOLATO COMPLEXES

CLIVE E. BRIANT, GLYN R. HUGHES, PETER C. MINSHALL and D. MICHAEL P. MINGOS*

Inorganic Chemistry and Chemical Crystallography Laboratories, University of Oxford, South Parks Road, Oxford OX 3QR (Great Britain)

(Received September 8th, 1980)

Summary

The synthesis and spectroscopic characterization of the complexes cis-Pt(SR)₂(PPh₃)₂ (R = H. Me, n-Bu and Ph) are reported, together with the single crystal X-ray crystallographic characterization of cis-Pt(SH)₂(PPh₃)₂. The ability of these complexes to act as bidentate ligands towards other metal centres is also briefly described.

In 1971 Ugo and his coworkers [1] reported that $Pt(PPh_3)_n$ (n = 2 or 3) reacts with H_2S to give an adduct $Pt(PPh_3)_2(H_2S)$, which in solution appeared to exist as a mixture of the tautomeric forms I and II.

A weak interaction between H_B and the platinum d_{z^2} orbital was initially proposed [2] to account for the high field chemical shift of H_B , although this was later discarded in favour of diamagnetic ring current effect arising from the proximity of H_B to a phenyl ring [2]. Subsequently there have been reports of other SH complexes of the platinum metals, but to date none of the complexes have been structurally characterized in the solid state [3,4].

0022-328X/80/0000-0000/\$ 02.25 © 1980 Elsevier Sequoia S.A.

We have found that chloroform solution of the dioxygen complex, Pt(O₂)(PPh₃)₂, react readily with H₂S and RSH (R = Me, n-Bu and Ph) according to the following equation

$$Pt(O_2)(PPh_3)_2 + RSH \rightarrow cis-Pt(SR)_2(PPh_3)_2 + H_2O_2$$

to give high yields of the *cis*-dithiolato complexes as off white (R = H) or pale yellow (R = Me, n-Bu or Ph) crystalline complexes. Crystals of *cis*-Pt(SH)₂(PPh₃)₂·CHCl₃ suitable for crystallographic investigation were obtained by recrystallisation from CHCl₃/EtOH.

Crystal data. The structure was determined from 5234 unique reflections having $I > 3\sigma(I)$ and refined to R = 0.0450. $C_{37}H_{33}S_2Cl_3P_2Pt$, M = 904.5, triclinic a 11 198(2), b 11.876(3) and c 14.462(4) Å, α 91.10(2), β 98.43(2) and γ 107.70(2)°, U 1808 Å³, Z = 2, D_c 1.66 g cm⁻³, μ (Mo- K_{α}) 45.4 cm⁻¹, F(000) = 824, Mo- K_{α} 0.71069 Å, Space group $P\overline{1}$.

The molecular structure of cis-Pt(SH)₂(PPh₃)₂ illustrated in Fig. 1 confirms that it has a *cis*-square planar structure with few significant distortions. The Pt, S(1), S(2), P(1) and P(2) atoms all lie within 0.06 Å of the best least squares planes through these atoms, and the deviations from 90° for S(1)—Pt—S(2) and P(1)—Pt—P(2) can be readily accounted for in terms of the very different steric requirements of SH and PPh₃. The hydrogen atoms on the SH ligands appear to be crystallographically disordered and therefore were not unambiguously located.

The ¹H and ³¹P{¹H} NMR data for the complexes cis-Pt(SR)₂(PPh₃)₂ (R = H, Me or n-Bu) given in Table 1 confirm that they all have cis-geometries. The ¹H resonance associated with the SH ligands in cis-Pt(SH)₂(PPh₃)₂ occurs at

Fig. 1. Molecular structure of cis-Pt(SH)₂(PPh₃)₂, Pt–S(1) 2.360(2), Pt–S(2) 2.340(2), Pt–P(1) 2.286(2), Pt–P(2) 2.279(2) Å; S(1)–Pt–S(2) 83.14(8), S(1)–Pt–P(1) 89.28(7), S(2)–Pt–P(2) 90.06(8), P(1)–Pt–P(2) 97.65(7)°.

TABLE 1

NMR PARAMETERS^a FOR cis-Pt(SR)₂(PPh₃)₂ IN CD₂Cl₂ AT 293 K

Complex	δ(SH)	δ(SMe)	δ(³¹ P) ^b	² J(Pt—H)	³ J(P-H)	³ J(Pt—H)	⁴ J(Pt—H)	¹ J(Pt—P)
cis-Pt(SH) ₂ (PPh ₃) ₂	0.1		21.37	50	8.5			2981
$cis-Pt(SBu)_2(PPh_3)_2$		2.25	25.52			54	6.5	2862
								2003

^a δ in ppm, J in Hz. ^b To high frequency of trimethylphosphate.

0.18 (cf. -1.58 for II [1] and trans-Pt(SH)₂(PEt₃)₂ [3] and -1.18 for trans-PtH(SH)(PEt₃)₂ [3]).

The cis-arrangement of dithiolato ligands in the complexes described in this paper suggests that they may be able to function as bidentate ligands towards other transition metal centres in a manner analogous to that reported previously for $M(\eta - C_5 H_5)_2(SR)_2$ (M = Ti or Nb; R = Me cr Ph) [5,6]. cis-Pt(SPh)₂(PPh₃)₂ reacts readily with Mo(CO)₄(η^4 -C₇H₈) in CHCl₃ solutions to give $(Ph_3P)_2Pt(\mu-SPh)_2Mo(CO)_4$ as a brick red crystalline solid (m.p. 134–137°C). The $\nu(CO)$ stretching frequencies for this mixed metal complex observed in CHCl₃ solutions at 2000, 1940, 1905, 1845 cm⁻¹, are consistent with its formulation as *cis*-bridged thiolato complex [5,6]. The complexes $cis-Pt(SR)_2(PPh_3)_2$ (R = n-Bu, or Ph) also react with the complexes $Pd(PhCN)_{2}Cl_{2}$ and $Pt(COD)Cl_{2}$ (COD = cyclooctadiene) to give the complexes $(Ph_3P)_2Pt(SR)_2MCl_2$ (M = Pd or Pt). The structural, spectroscopic and electrochemical properties of these complexes are currently being investigated. However, these preliminary results indicate that the complexes cis-Pt(SR)₂(PPh₃)₂ may prove to be important precursors for binuclear mixed metal thiolato complexes.

We thank the S.R.C. for financial support and Johnson-Mathey for the loan of platinum metals.

References

- 1 R. Ugo, G. La Monica, S. Cenini, A. Segre and F. Conti, J. Chem. Soc. A, (1971) 522.
- 2 D. Morelli, A. Segre, R. Ugo, G. La Monica, S. Cenini, F. Bonati and F. Conti, Chem. Commun., (1967) 524.
- 3 I.M. Blacklaws, E.A.V. Ebsworth, D.W.H. Rankin and H.E. Robertson, J. Chem. Soc. Dalton Trans., (1978) 753.
- 4 T. Miyamoto, J. Organometal. Chem., 134 (1977) 335.
- 5 P.S. Braterman, V.A. Wilson and K.K. Joshi, J. Chem. Soc. A, (1971) 191.
- 6 W.E. Douglas and M.L.H. Green, J. Chem. Soc. Dalton Trans., (1972) 1796.

C20